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AN
Abstract = ’af'wl /u*tv‘( r:/(hlﬁ-j !
'N points in a square of area A may be sorted according to their images under
a spacefilling mapping to give a tour of length at most ;}Eﬁ:/ If tﬁe ﬁointa
are statistically independent under a smooth distribution, with N large, then
the tour will be roughly 25% longer than optimum (and a simple enhancement
reduces this to 15%). The algorithm is easily coded: a complete BASIC program
is included in the appendix. Since the algorithm consists essentially of
sorting, points are easily added or removed. Our method may also be used

with simple dynamic programming to solve TSP path problemsii&

Key Words: travelling salesman problem, heuristic, routing, spacefilling curve.
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l. Introduction

The travelling salesman problem (TSP) is to construct a circuit of minimum
total length that visits each of N given points. Even in the plane, ;hia-prohlem
NP—éomplete (5]. Karp [4] has given an asympcétically efficient heuristic, but
it {a difficult to code and its effort has a large constant factor. Bentley and

Saxe [2] gave an efficient implementation of the nearest neighbor heuristic,

- but it requires a special data structure. We give a faster, simpler heuristic

that performs comparably.

2. Overview of the Method

Let
C=1{6 |0<8<1l} (1)

denote the unit circle, so that 6 ¢ C represeants a point on the circle 8

revolutions removed, clockwise, from a fixed reference point. Also let

S ={(x,y) | 0<x<1,0<y <1} (2)

denote the unit square, and suppose that we are given a continuous mapping ¥
from C onto S. Such mappings were first constructed by Peano and Hilbert in
the 1890's and are known as 'spacefilling curves." (See, e.g., Hobsom [3,
pp. 451-458].

Suppose, moreover, that lime+lwce) = $(0). Then, as 8 ranges fronib to 1,

v(0) traces out a "tour"” of all the points in S. Given.ﬁ points in S to be

visited, a reasonable atrategy is to sequence them as they appear along the space-

filling curve. In short, we sequence them according to their inverse image

under y.
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; The specific form of ¥ is not easential to our presentation at this

time, and isdeferred to Section 3. We need only two properties:

(?1) An inverse image of ¥ can be easily computed. Specifically,
if ; and y have k-bit binary representations, then a 8 satisfying (x,i) = y(6)
may be computed in O(k) operations. Note that although many such 6 may exist,
we must compute ouly one.

(P2) There is a concave function £(-) on [0,1], with £(0) = 0 and %f

£(a) = £(1-A), such that s

] weey - w(e') || < £¢je~8']) 3)

where ||<|| denotes the metric on S with respect to which the tour is to

be minimized. it

_3. Routing Problems in the Circle f
The basic 1dea in our approach is to solve routing probiems in C rather
than S, taking as the distance between two points in C the upper bound f(le-e'l)
on the distance between their images under y. The problem in C has a great
deal of structure, attributable to the concavity of f:
Proposition 1: (Triangle Inequality) Let 61 < 02 < 63. Then f(ez-el> + f(ea-ez)
> f(aa-elj.

Proposition 2: (Crossing Elimination) Let 8 <6, <8, < 0,. Then

(#) f(63-01) + f(Oa-Gz)_i f(ez-el) + f(64-63)

Proofs: We appeal to the following standard imequality for concave functioms:

e
. .

f(a) + £(d) < £(V) + £(c) 1f a < b,c; b,c < d; a + d - b+ c.

To prove Proposition 1, let a= (0, b = 62 - 91. c= 63 - 62. and d = 93 - 61.
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To prove Proposition 2 (i), let a = ez - el. ¥ = 63 - 61, e =1 - (84 - 92).
d=1- (64 ~ 63), and recall that f(4) = £(1-A). The proof of part (1i) is

eimilar. 0

Remark: OQur metric is more general than |6-8'|, and the triangle inequality
will usually be a atrict inequality!

It follows from these propositious that an optimal tour on C, under
metriec f, is obtained by visiting the points in a sequence from smallest 8
to largest 8.

Variations of the TSP may alsc be easily solved on C. For example, if
all points are to be visited starting at e* and ending at 9**, 6* < 9**. then
we know that all points between 6* and 6 ** must dbe viaitéd in an increasing
sequence, the remaining points must be visited in decreasing sequence from
e* to 0 and then frdm 1 to e**. The optimal interleafing of these two sequences
is obtained in O(Nz) operations, by dynamic programming. The TSP path problem
with one free endpoint 18 similarly solvable.

Note that, once the optimal tour has been obtained for any set of pointe .
on C, it has been obtained for ;ny subget (not necessarily consecutivé) of those

points.

4. The Spacefilling Curve
The approach outlined in Section 2 is valid for any spacefilling curve

v satisfying (P1l) and (P2). We now Feacribe one such curve for which the
bound (3) is particularly tight. This curve is recursively defined by dividing
8 1nt§ four .identical subequares, conut:ﬁctins a curve that filia each sub-
square, and joiming them at the center of S (see Figure 1). The intuition

behind this definition 1is to join a point with its immediate neighbors before
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Proceeding to 3 new region. In this respect it resembles the partitioning
algorithm of Karp [4].
. In order to translate this idea into a mathematical equation, we first

number the vertices of S:

4y = (0,0), q; = (0,1), q, = (1,1), q = (1,0) (4

and adopt the convention:
¥(i/4) = q 1 =0,1,2,3 (%)

Accor&ingly.w(e)will cover the subsquare of S whose outside vertex is 9
when |€-1/4| < 1/8 (or > 7/8 when i = 0). Each subsquare covering must be
rotated so that it begins and ends at the cemter of §. Consequently we
may exbgess ¥y recursively as the solution of

¥(0) = slv(fract(4e + (6-1)/4)) + q,] (6)

{1 = fnc(49 + %) mod 4

where the term )% scales each subsquares, thé argument of fract(+) reorients it,
and +qi tranglates it to the desired position in S.

1f Je view (6) as a fixed point identity, y = Ty, then T is seen to be a
contraction operator, and so there is a unique function y satisfying (6). More-
over va +» y for any inictial approximation vV of y. A sequence of approximations
;tatting from (5) is shown in Figure 2.

The-aanc argument may be carrieh out in reverse to sﬁow that there is a
fuaction ¢: S - C such that y(¢(x,y)) = (x,y). This function satisfies a con-~
tracting recursive identity similar to (6), and 1s evaluated iteratively in

the same manner as y. Since this function is given explicitly as part of

it

it s o




k . the algorithm in the appendix, we avoid repeating it here. . ‘
This spacefilling curve satisfies (Pl) and (P2) as we now show. Note I

that (6) breaks the range of 8 into quartevs to determine the first bit of

‘ '
k the binary expansion of x and y. Each successive pair of bits in 6 corresponds L
} N

to & new bit for x and a new bit for y. Thus, it is cléar that y satisfies (Pl).

For any 8,8', we may construct a square o6f side at most 4/|8-8'| containing
v(e) and ¥(3'), so £(A)= 428, O < <k, in (P2), where ||-|| in (3) is under-

stood to be the Euclidean distance. We may improve this bound to

£Qa) = 2/2 0<ac<hk ‘ L (N

The justification for (7) is too long to be given here.

This definition of ¢ is readily extended to d-dimensional space. Each

d
d bits of 6 then determine a single bit for each coordinate, and £(A) = 4 evd - JE-_
If the rectilinear metric is to be considered, £(A) = 4-d -dJZ} for the

sup norm metric, £(4) = 4'.dJZ,

5. Performance Analysis

Computation Effort. Since our algorithm projects the given points onto C in O(kN)
operations (in view of (Pl)), &nd -sorts themvin O(Nlogui operations, it requires
0(NlogN) ;perations to obtain the heuristic tour.

.Qggigg; A short BASIC code, given in the appendix, demonstrates the

. ease with which this algorithn may be implemented.

WOrst-Casg'Analysis. Given N sorted points 91,...,9N, the tour length is

1417550
in 91.....8N. it achieves a maximum of Nf(1/N). In view of (7), the heuristic

}‘ bounded above by f(eu-qe 4'Z¥:i £(0 Since this expression is concave

l tour cannot exceqd 2/N in length. Projected onto a square of area A, this implies

heuristic tour < 2/NA e




An interesting corollary is: optimel tour = 2/Ma.

Probabllistic Apalysis. If the points are uniformly discributed in S, then

they will be uniformly distributed on C z2s well, and sc are approximated by
a Poisson process. Conseguently, the expected tour length is bounded above
by N.r Ne_Nx f(x)dx = /TN. Because of the recursive nature of the algorithm,

it is easy to show that, in a square of area A,

heuristic tour
NA

+ a constant, as N + o (9

in much the same sense that {optimal tour / NA) -+ .765; see Zeardwood, Halton
and Hammersley{l]. We have estimated the parameter in {(9) ke .956, and so

the heuristic tour will be roughly 25% over optimum when N is large. Interestingly
the ratic of heuristic tour to optimal tour does not depeud on the points’
distribution - so léng as it has bounded density. We have also shown that the
longest distance between successive points in the heuristic tour is bounded

above by 2/?27§7__1;§§: almcst surely, as N + «; it may generally be found

between 1.1 ¢(A/N)logN and 1.3/(A/N) logN.

Optional Enhancement. An O(kNlogN) additional ster can reduce the expected
ratio of heuristic tour to optimal tour to an estimated 1.15. Briefly, the
enhancement projects each point onto the boundary of its minimal containing

region and attempts to interchange its position on C with that of the inverse

image of the point on the opposite side of this boundary.

6. Conclusions

Our algorithm should prove useful in large applications because of its
speed,only O(N log N), an order of magnitude faster than any other TSP

heuristic commonly considered. It achieves this by the surprising tactic
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of ignoring interpoint distances (there areO(Nz))~ Its simplicity should
make it attractive for small problems as well. The heuristic tour it produces
has nice properties: points may be easily inserted or deleted (in 0(logk)
operations) without re-solving the entire problem, and the longest distance
between successive points on the tour tends to be small. {This is not true,
in general, for tours that are nearest neighbor, optimal, etc.) Moreover
the tour tends to be good with respect to a variety of metrics and for
points drawn from gemeral (possibly unknown) distributicns. The algerithm
requires no real multiplications or square roots, and so should execute
quickly on microprocessor-based systems. The authors have even become
relatively proficient at solﬁing small (up to 100 points) problems by

hand, graphically. Alternatively, the poiuts and their images 9 may be
marked on index cards and placed in & shoebox. To produce a heuristic

tour of any subset of the poiunts, locate their cards and perform a manual

sort.
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APPENDIX

The following BASIC program will compute a heuristic tour of K points
in a square of side S. The following remarks will help to interpret 1t.
Lines 50-100 compute the inverse image TH(I) cf the point (X(I)/S,Y(I)'R)
in che unit square, taking into account only the first K=10 bits of the
coordinates' binary expansion. In the J=th iteration of iine 70, the
1Q(J)-th quadrant of the present subsquare is selected as the next sub-
square to be exawmined. Lines 110-220 perform a sort tc icdentify the I-th
smallest value in TH as the ID(I)-th element of the array. Lines 150-180
will be executed N rlog ﬁ] times. Variables whose names start with I-N
will contain integer values. This progrem may require simple modifications

to run under some versicns of BASIC {(e.g., eliminate variable dimensions

in 30).
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20
30
40
50
60

8C
90

100
110
120
130
140
150
160
170

180
190
200

" 210
220
230
240

250

INPUT "“NUMBER OF POINTS";N : K=i( : KP=I4+({K-1)
INPUT "SIDE OF SQUARE™;S : PRIN1 "NAME. X, Y:"
DIM A$(N) ,X{(N),Y(N),TH{(N),IC(KY,In(NY IC(N)
FOR T=1 TO N : INPUT AS5(I},X(I),¥(I) : NEXT I
FOR I=1 TO N : KR=2%KP-.1
KX=INT (X(I)*KR/S) : K¥Y=INT(Y(I}*KR/S)
FOR J*=1 TO K : JX=INT(RX/KP) : JY=INT(KY/KP)
: RX=2% (KX-KP*JX) : KY=2%(KY-KP*JY)
¢ IQEI)=JY+3*TX-2*IX*JY : NEXT J
T=IQ(K)/4
FOK J=K-1 TQO 1 STEPF -1 : T=T+{6-IQ(J))/4
¢ T=T-INT(T) : T=(3.5+T+IQ(J))/4 : NEXT J
TH(I)=T-INT(T) : ID(T)=I : NEXT I
M2=2 ; TH(O)=-1
M=M2 : M2=M2%2 : IF M2<N THEN “OTO 120
~FOR I=N TO N-M+1 STEP -1
Jl=1 : J2=I-M : J3=0 : J4=I
J3=J3+1
IF J1<0 THEN J1=0 ELSE IF J2<0 THEN J2=0Q
IF THCID(J1) )>TH(ID(J2)) THEN IC(J3)=ID(J1)
: J1=J1-M2 ELSE IC(J3)=ID{J2) : J2=J2-M2
IF J1>0 OR J2>0 THEN GOTO 150
IF J3<=1 THEN GOTO 220
* FOR J=1 TC J3 : ID(J4)=IC(J) : Jé=J4&-M : NEXT J
NEXT I
M2=M : M=M/2 : IF M>=1 THEN GOTC 130
PRINT : PRINI "RANK","NAHME","X","Y","THETA"
FOR I=1 TO N : J=ID(I)
: PRINT I,A%(J),X(3),Y(I),TK) : NEXT I
END
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